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Abstract

In this paper, the finite-temperature Casimir force acting on a two-dimensional
Casimir piston due to an electromagnetic field is computed. It was found that
if mixed boundary conditions are assumed on the piston and its opposite wall,
then the Casimir force always tends to restore the piston toward the equilibrium
position, regardless of the boundary conditions assumed on the walls transverse
to the piston. In contrast, if pure boundary conditions are assumed on the piston
and the opposite wall, then the Casimir force always tends to pull the piston
toward the closer wall and away from the equilibrium position. The nature
of the force is not affected by temperature. However, in the high-temperature
regime, the magnitude of the Casimir force grows linearly with respect to
temperature. This shows that the Casimir effect has a classical limit as has
been observed in other literature.

PACS number: 11.10.Wx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the work of Cavalcanti [1], the Casimir effect of the piston geometry (see figure 1)
has attracted considerable interest as it has been shown to be free of a divergence problem.
Some studies have been devoted to this subject [2–16]. It was found that for a massless
scalar field with periodic boundary conditions (b.c.), Dirichlet b.c. and Neumann b.c., and
for an electromagnetic field with perfect electric conductor (PEC) b.c. and perfect magnetic
conductor (PMC) b.c. in a d-dimensional space, the Casimir force acting on the piston always
tends to pull the piston to the closest wall. This might create an undesirable effect known
as stiction in the functionality of nano-devices. In [5], Barton showed that for a thin piston
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Figure 1. The two-dimensional rectangular piston.

with weakly reflecting dielectrics, the Casimir force at small separations is attractive, but
turns to repulsive as the separation increases. Another scenario which leads to repulsive
Casimir force was considered in [9, 16], where a massless or massive scalar field is assumed
to satisfy Neumann b.c. on the piston and Dirichlet b.c. on all other walls. In this case, the
zero-temperature Casimir force was shown to be always repulsive. In [10], it was suggested
that a perfectly conducting piston inside a rectangular cavity with infinitely permeable walls
will lead to repulsive Casimir force.

In this paper, we consider the thermal correction to the repulsive Casimir force due to
an electromagnetic field with mixed boundary conditions (PEC b.c. on one wall and PMC
b.c. on the opposite wall) and determine whether temperature will change the nature of the
force. We only consider the case where the space dimension d = 2. This will simplify
the mathematical computation but it gives enough indications for the general case of higher
dimensions which will be considered in future. The two-dimensional rectangular Casimir
pistons for the electromagnetic field with purely PEC b.c. and purely PMC b.c. have been
studied. The Casimir effect due to an electromagnetic field with PMC b.c. coincides with the
Casimir effect due to a massless scalar field with Dirichlet b.c. whose zero-temperature limit
is studied in the pioneering work [1]. The Casimir effect due to an electromagnetic field with
PEC b.c. coincides with the Casimir effect due to a massless scalar field with Neumann b.c.
whose zero-temperature limit is considered in [8]. The finite-temperature Casimir effect was
recently considered in [15]. It was found that for pure boundary conditions, the Casimir force
is always attractive at any temperature. Therefore, it will be interesting to see whether the
thermal correction affects the repulsive nature of the Casimir force due to the electromagnetic
field with mixed b.c. This is the issue addressed in this paper. We consider a more general case
of mixed b.c., where each pair of parallel plates can either assume pure boundary conditions
(both PEC b.c. or both PMC b.c.) or mixed boundary conditions.

In this paper, we work in the units where h̄ (reduced Planck constant), c (speed of light)
and kB (Boltzmann constant) are equal to unity.

2. Casimir energy for an electromagnetic field with mixed boundary conditions inside a

rectangular cavity

Recall that the finite-temperature Casimir energy is defined as the sum of the zero-temperature
Casimir energy and the temperature correction, i.e.,

ECas = E0
Cas + �ECas = 1

2

∑
ωk �=0

ωk + T
∑
ωk �=0

log
(
1 − e− ωk

T

)
,

2
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where ωk runs through all zero point energies. The sum corresponding to the temperature
correction �ECas is a convergent sum. However, the zero-temperature contribution E0

Cas is
divergent. There are different ways to regularize this sum. In the zeta regularization scheme
[17–20], we define the zeta function

ζ0(s) =
∑
ωk �=0

ω−2s
k

and analytically continue it to a neighborhood of s = −1/2. If ζ0(s) is regular at s = −1/2,
the zeta-regularized zero-temperature Casimir energy is then defined as

E
0,zetareg
Cas = 1

2ζ0
(− 1

2

)
.

Correspondingly, the finite-temperature Casimir energy can be computed by using the zeta
function

ζ(s) =
∑
ωk �=0

∞∑
l=−∞

(
ω2

k + (2πlT )2)−s
.

It can be shown that (see [21–24]) if ζ(s) has an analytic continuation to a neighborhood of
s = 0 with ζ(0) = 0, then

ζ ′(0) = − 1

T
ζ0

(
−1

2

)
− 2

∑
ωk �=0

log
(
1 − e− ωk

T

)
.

Consequently, the zeta-regularized finite-temperature Casimir energy is equal to

E
reg
Cas = −T

2
ζ ′(0).

A disadvantage of applying the zeta regularization scheme is that all the divergence terms in
the Casimir energy have been renormalized to zero. However, it can be shown as in [15] that
in the piston scenario, the divergence terms of the Casimir force acting on the piston due to
region I and region II always cancel without renormalization due to the fact that the divergence
terms of the Casimir energies are linear in L1.

For an electromagnetic field inside a d-dimensional space �, the field strength is
represented by a totally anti-symmetric rank-two tensor Fμν, μ, ν = 0, 1, . . . , d, satisfying
the equations

∂μF̃μν1...νd−2 = 0, ∂μFμν = jν, (1)

where F̃μ1...μd−1 = εμ1...μd−1,ν,λFνλ is the dual tensor of Fμν , and jν is the current. In the
vacuum state jν = 0. There are two ideal boundary conditions that are of particular interest,
i.e., the PEC b.c. characterized by nμF̃μν1...νd−2 |∂� = 0 and the PMC b.c. characterized by
nμ Fμν |∂� = 0. Introducing the potentials Aμ so that

Fμν = ∂μAν − ∂νAμ, ∂0 = ∂0, ∂i = −∂i, 1 � i � d,

and working in the radiation gauge

A0 = 0, ∂iA
i = 0,

equation (1) is equivalent to

�Ai = 0, � := ∂2
0 −

d∑
j=1

∂2
j ,

when jμ = 0. When the space � is a rectangular cavity � = [0, L1] × · · · × [0, Ld ], the PEC
b.c. on a wall xi = 0 or xi = Li is equivalent to

∂μAν − ∂νAμ|xi=0 or xi=Li
= 0

3
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for all μ �= ν ∈ {0, 1, . . . , d}\{i}; whereas the PMC b.c. is equivalent to

∂iAμ − ∂μAi |xi=0 or xi=Li
= 0

for all μ ∈ {0, 1, . . . , d}\{i}. Restricted to the case d = 2, we consider the following different
combinations of boundary conditions:

Case I. Mixed boundary conditions (i.e., one wall PEC b.c. and one wall PMC b.c.) on both
x1 and x2 directions.

Case II. Mixed boundary conditions on one direction, say x1, and purely PEC b.c. in the other
direction.

Case III. Mixed boundary conditions on one direction, say x1, and purely PMC b.c. in the
other direction.

Now we derive the finite-temperature Casimir energy of the electromagnetic field for each
of the above boundary conditions:

Case I. In this case, we are looking for solutions of A1(x1, x2, t) and A2(x1, x2, t) satisfying(
∂2
t − ∂2

x1
− ∂2

x2

)
Ai = 0, i = 1, 2, ∂x1A1 + ∂x2A2 = 0, (2)

and the boundary conditions

∂tA1|x1=L1,x2=0 = 0, ∂tA2|x1=0,x2=L2
= 0,

(
∂x1A2 − ∂x2A1

)∣∣
x1=L1,x2=L2

= 0.

It is easy to verify that a basis of solutions is given by(
A1(x1, x2, t)

A2(x1, x2, t)

)
=

⎛⎝α1 cos
π(k1+ 1

2 )x1

L1
sin

π(k2+ 1
2 )x2

L2

α2 sin
π(k1+ 1

2 )x1

L1
cos

π(k2+ 1
2 )x2

L2

⎞⎠ e−ωk t , k1, k2 ∈ Ñ = N ∪ {0},

subjected to the condition

α1
(
k1 + 1

2

)
L1

+
α2

(
k2 + 1

2

)
L2

= 0.

Here

ωk = π

√√√√(
k1 + 1

2

L1

)2

+

(
k2 + 1

2

L2

)2

.

The corresponding zeta function is

ζ(s) = π−2s

4

{
Z3

(
s; 1

2L1
,

1

2L2
, 2T

)
− Z3

(
s; 1

2L1
,

1

L2
, 2T

)

−Z3

(
s; 1

L1
,

1

2L2
, 2T

)
+ Z3

(
s; 1

L1
,

1

L2
, 2T

)}
,

where Zn (s; c1, . . . , cn) is the homogeneous Epstein zeta function defined by

Zn(s; c1, . . . , cn) =
∑
k∈Ẑ

n

⎛⎝ n∑
j=1

[cj kj ]2

⎞⎠−s

, (3)

and Ẑ
n = Z

n \{0}. Since Zn(0; c1, . . . , cn) = −1, we find that the regularized Casimir energy
for the electromagnetic field with mixed boundary conditions in both x1 and x2 directions of

4
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a rectangular cavity is given by

E
I,reg
Cas (L1, L2) = −T

8

{
Z′

3

(
0; 1

2L1
,

1

2L2
, 2T

)
− Z′

3

(
0; 1

2L1
,

1

L2
, 2T

)

−Z′
3

(
0; 1

L1
,

1

2L2
, 2T

)
+ Z′

3

(
0; 1

L1
,

1

L2
, 2T

)}
. (4)

Explicit formulae for Z′
n(0; c1, . . . , cn) are given in the appendix.

Case II. in this case, we are looking for solutions of A1(x1, x2, t) and A2(x1, x2, t) satisfying
(2) and the boundary conditions

∂tA1|x1=L1,x2=0,x2=L2
= 0, ∂tA2|x1=0 = 0,

(
∂x1A2 − ∂x2A1

)∣∣
x1=L1

= 0.

A basis of solutions is given by(
A1(x1, x2, t)

A2(x1, x2, t)

)
=

⎛⎝α1 cos
π(k1+ 1

2 )x1

L1
sin πk2x2

L2

α2 sin
π(k1+ 1

2 )x1

L1
cos πk2x2

L2

⎞⎠ e−ωk t , k1, k2 ∈ Ñ,

ωk = π

√√√√(
k1 + 1

2

L1

)2

+

(
k2

L2

)2

,

subjected to the condition

α1
(
k1 + 1

2

)
L1

+
α2k2

L2
= 0.

The corresponding regularized Casimir energy is

E
II,reg
Cas (L1, L2) = −T

8

{
Z′

3

(
0; 1

2L1
,

1

L2
, 2T

)
− Z′

3

(
0; 1

L1
,

1

L2
, 2T

)

+ Z′
2

(
0; 1

2L1
, 2T

)
− Z′

2

(
0; 1

L1
, 2T

)}
. (5)

Case III. in this case, we are looking for solutions of A1(x1, x2, t) and A2(x1, x2, t) satisfying
(2) and the boundary conditions

∂tA1|x1=L1
= 0, ∂tA2|x1=0,x2=0,x2=L2

= 0,
(
∂x1A2 − ∂x2A1

)∣∣
x1=L1,x2=0,x2=L2

= 0.

A basis of solutions is given by(
A1(x1, x2, t)

A2(x1, x2, t)

)
=

⎛⎝α1 cos
π(k1+ 1

2 )x1

L1
cos πk2x2

L2

α2 sin
π(k1+ 1

2 )x1

L1
sin πk2x2

L2

⎞⎠ e−ωk t , k1 ∈ Ñ, k2 ∈ N,

ωk = π

√√√√(
k1 + 1

2

L1

)2

+

(
k2

L2

)2

,

subjected to the condition

−α1
(
k1 + 1

2

)
L1

+
α2k2

L2
= 0.

5
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The corresponding regularized Casimir energy is

E
III,reg
Cas (L1, L2) = −T

8

{
Z′

3

(
0; 1

2L1
,

1

L2
, 2T

)
− Z′

3

(
0; 1

L1
,

1

L2
, 2T

)

−Z′
2

(
0; 1

2L1
, 2T

)
+ Z′

2

(
0; 1

L1
, 2T

)}
. (6)

Note that there is a slight difference between the set of eigenmodes in the
case III. In the case II, we allow k2 = 0 which corresponds to solutions(

A1(x1, x2, t)

A2(x1, x2, t)

)
=

(
0

α2 sin
π(k1+ 1

2 )x1

L1

)
e−ωkt , k1 ∈ Ñ, ωk = π

(
k1 + 1

2

)
L1

.

However, in the case III, k2 = 0 implies that α1 = 0 and A1 = A2 ≡ 0. Therefore there is no
eigenmode with k2 = 0.

3. Casimir force acting on the piston for an electromagnetic field with mixed boundary

conditions

In this section, we consider the Casimir force acting on a two-dimensional rectangular piston
due to an electromagnetic field with mixed boundary conditions. The boundary conditions on
the walls of region I are the cases I, II, III as considered in the previous section. In region II,
we assume that the boundary condition on the wall x1 = L1 is the same as on the wall x1 = 0.
We have the following cases.

3.1. Case MBC-A

We assume mixed boundary conditions on both directions. In this case, we find that the total
regularized Casimir energy of the piston system is

E
A,reg
Cas (a;L1, L2) = E

I,reg
Cas (a, L2) + E

I,reg
Cas (L1 − a, L2).

Applying the Chowla–Selberg formula (A.2) to (4), we find that

E
I,reg
Cas (L1, L2) = −T

8

⎧⎪⎨⎪⎩L1L2

2πT
Z2

(
3

2
; 2L2,

1

2T

)
− L1L2

4πT
Z2

(
3

2
;L2,

1

2T

)

+ 4
∞∑

k1=1

∞∑
k2=0

∞∑
l=−∞

(−1)k1

k1
exp

⎛⎜⎝−2πk1L1

√√√√(
k2 + 1

2

L2

)2

+ (2lT )2

⎞⎟⎠
⎫⎪⎬⎪⎭ .

Therefore, in the limit L1 → ∞, the Casimir force acting on the piston is given by

F
A,L1=∞
Cas (a;L2) = lim

L1→∞
F A

Cas(a;L1, L2)

= − lim
L1→∞

∂

∂a
E

A,reg
Cas (a;L1, L2)

= πT

∞∑
k2=0

∞∑
l=−∞

√(
k2+ 1

2
L2

)2
+ (2lT )2

exp

(
2πa

√(
k2+ 1

2
L2

)2
+ (2lT )2

)
+ 1

. (7)

6
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Note that this is a positive decreasing function in a. Consequently, when L1 is finite, the
Casimir force acting on the piston,

F A
Cas(a;L1, L2) = F

A,L1=∞
Cas (a;L2) − F

A,L1=∞
Cas (L1 − a;L2),

is positive if a < L1 − a, and is negative if a > L1 − a. In other words, at any temperature,
the Casimir force always tends to restore the piston to the equilibrium position x1 = L1/2,
which is the middle of the cavity.

The infinite summation in expression (7) for the Casimir force converges very fast if
a 	 L2. It shows that in the limit L1 → ∞, the magnitude of the Casimir force decays
exponentially when the plate separation a is large. In the most practical situation, we are
interested in the opposite case where a 
 L2. In this latter case, the Chowla–Selberg formula
(A.2) gives

F
A,L1=∞
Cas (a;L2) = 3ζR(3)

32π

L2

a3
− L2

32π

∑
(k3,�)∈Ẑ

2

(−1)k2(
[k2L2]2 +

[
l

2T

]2 ) 3
2

+
πL2

2a3

∞∑
k1=0

∑
(k2,�)∈Ẑ

2

(−1)k2

×
(

k1 +
1

2

)2

K0

⎛⎝2π
(
k1 + 1

2

)
a

√
[k2L2]2 +

[
l

2T

]2
⎞⎠ . (8)

This shows that at any temperature, when the plate separation a is small, the leading behavior
of the Casimir force is given by

F
A,L1=∞
Cas (a;L2) ∼ 3ζR(3)

32π

L2

a3
+ O(a0).

It implies that when a → 0+, the magnitude of the Casimir force approaches ∞ and behaves
as 1/a3. From this we can conclude that at any temperature, the Casimir force acting on the
piston, considered as a function of a ∈ (0, L1), decreases from ∞ to 0 when a ∈ (0, L1/2)

and increases from 0 to ∞ when a ∈ (L1/2, L1).
Formula (7) can also be used to study the high-temperature behavior of the Casimir force.

It shows that in the high-temperature regime, the leading behavior of the Casimir force is

F A
Cas(a;L1, L2) ∼ πT

L2

∞∑
k2=0

k2 + 1
2

exp
(

2πa
L2

(
k2 + 1

2

))
+ 1

− (a ←→ L1 − a) , (9)

which is linear in T. The remaining terms decay exponentially as T → ∞. If we restore
the units h̄, c and kB to the expression for Casimir force, we find that a term with T j will be
accompanied by h̄j−1. Therefore, (9) shows that the Casimir force acting on the piston has a
classical (h̄ → 0) limit, as has also been observed in other works on the Casimir effect (see,
e.g., [25–28]). The right-hand side of (9) is called the classical term of the Casimir force.

In the low-temperature (T 
 1) regime, the Casimir force is dominated by the zero-
temperature Casimir force, with the correction term being the temperature correction:

F A
Cas(a;L1, L2) = F

A,T =0
Cas (a;L1, L2) + �T F A

Cas(a;L1, L2).

Applying the Chowla–Selberg formula (A.1), we have

− L2

32π

∑
(k3,�)∈Ẑ

2

(−1)k2(
[k2L2]2 +

[
l

2T

]2) 3
2

= − L2

32π

(
2Z2

(
3

2
; 2L2,

1

2T

)
− Z2

(
3

2
;L2,

1

2T

))

= 3ζR(3)

64πL2
2

− T

L2

∞∑
k2=0

∞∑
l=1

k2 + 1
2

l
K1

(
π

(
k2 + 1

2

)
l

L2T

)
.

7
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With this, we can read from the formula (8) that the zero-temperature Casimir force is given
by

F
A,T =0
Cas (a;L1, L2) = 3ζR(3)

32π

L2

a3
+

3ζR(3)

64πL2
2

+
πL2

a3

∞∑
k1=0

∞∑
k2=1

(−1)k2

(
k1 +

1

2

)2

×K0

(
2πk2

(
k1 + 1

2

)
L2

a

)
− (a ←→ L1 − a),

and the thermal correction is

�T F A
Cas(a;L1, L2) = − T

L2

∞∑
k2=0

∞∑
l=1

k2 + 1
2

l
K1

(
π

(
k2 + 1

2

)
l

L2T

)
+

πL2

a3

∞∑
k1=0

∞∑
k2=−∞

∞∑
l=1

× (−1)k2

(
k1 +

1

2

)2

K0

⎛⎝2π
(
k1 + 1

2

)
a

√
[k2L2]2 +

[
l

2T

]2
⎞⎠− (a ↔ L1 − a).

Note that if L1 → ∞, the thermal correction to the Casimir force decays to zero exponentially
fast when T → 0+.

In the limit L1, L2 → ∞, the geometric configuration becomes that of a pair of infinite
parallel plates separated by a distance a. In this case, since

− L2

32π

∑
(k3,�)∈Ẑ

2

(−1)k2(
[k2L2]2 +

[
l

2T

]2) 3
2

= −L2T
3

2π
ζR(3) +

π

48

T

L2

− 2T 2
∞∑

k2=1

∞∑
l=1

(−1)k2

k2
lK1(4πk2lL2T ),

equation (8) then implies that in the infinite parallel plates limit, the Casimir force acting on a
wall is given by

F
A,||
Cas (a) = L2

{
3ζR(3)

32πa3
− T 3

2π
ζR(3) +

π

a3

∞∑
k1=0

∞∑
l=1

(
k1 +

1

2

)2

K0

(
πl

(
k1 + 1

2

)
aT

)}
. (10)

This shows that for infinite parallel plates, the zero-temperature Casimir force is

F
A,||,T =0
Cas (a) = 3ζR(3)

32πa3
L2.

The temperature correction is of order T 3 as T → 0+. The remaining terms decay to zero
exponentially fast when T → 0+. In the-high temperature regime,

F
A,||
Cas (a) = L2

{
π

48a2
T − 2T 2

a

∞∑
k1=1

∞∑
l=1

(−1)k1
l

k1
K1(4πlk1T a)

− 8πT 3
∞∑

k1=1

∞∑
l=1

(−1)k1 l2K0(4πlk1T a)

}
.

This shows that the classical limit of the Casimir force acting on a pair of infinite parallel
plates with mixed boundary conditions is

F
A,||,classical
Cas (a) = πL2

48a2
T .
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3.2. Case MBC-B

We assume mixed boundary conditions in the x1 direction and purely PEC b.c. in the x2

direction. Using the same method as the previous section, we find that the Casimir force
acting on the piston is given by

F B
Cas(a;L1, L2) = F

B,L1=∞
Cas (a;L2) − F

B,L1=∞
Cas (L1 − a;L2),

where

F
B,L1=∞
Cas (a;L2) = πT

∑
(k2,l)∈Ñ×Z\{0}

√(
k2
L2

)2
+ (2lT )2

exp

(
2πa

√(
k2
L2

)2
+ (2lT )2

)
+ 1

. (11)

As in the previous case, this shows that at any temperature, the Casimir force tends to pull the
piston to the equilibrium position x1 = L1/2. Moreover, it shows that in the high-temperature
limit, the leading term of the Casimir force is given by the classical term

F B
Cas(a;L1, L2) ∼ πT

L2

∞∑
k2=1

k2

exp
( 2πk2a

L2

)
+ 1

− (a ↔ L1 − a). (12)

An alternative expression for F
B,L1=∞
Cas (a;L2) that can be used to study the small a and

low T behavior of the Casimir force is

F
B,L1=∞
Cas (a;L2) = 3ζR(3)

32π

L2

a3
+

π

96a2
− ζR(3)

16πL2
2

− πT 2

6
− T

L2

∞∑
k2=1

∞∑
l=1

k2

l
K1

(
πk2l

L2T

)

+
πL2

2a3

∞∑
k1=0

∑
(k2,�)∈Ẑ

2

(
k1 +

1

2

)2

K0

⎛⎝2π
(
k1 + 1

2

)
a

√
[k2L2]2 +

[
l

2T

]2
⎞⎠

+
π

2a2

∞∑
k1=0

(
k1 + 1

2

)
exp

(π(k1+ 1
2 )

T a

) − 1
. (13)

It shows that when the plate separation a is small, the leading term of the Casimir force is
given by

F B
Cas(a;L1, L2) ∼ 3ζR(3)

32π

L2

a3
+

π

96a2
+ O(a0).

Note that the first term behaves as 1/a3 when a → 0+. On the other hand, (13) gives the
zero-temperature Casimir force as

F
B,T =0
Cas (a;L1, L2) = 3ζR(3)

32π

L2

a3
+

π

96a2
− ζR(3)

16πL2
2

+
πL2

a3

∞∑
k1=0

∞∑
k2=1

(
k1 +

1

2

)2

×K0

(
2π

(
k1 + 1

2

)
k2L2

a

)
− (a ←→ L1 − a) . (14)

The thermal correction goes to zero exponentially fast when T → 0+.
In the parallel plate limit, it can be checked that one would obtain the same result as (10).

This should be expected since in the limit L2 → ∞, the boundary conditions assumed on the
x2 direction become immaterial.

9
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3.3. Case MBC-C

We assume mixed boundary conditions in the x1 direction and purely PMC b.c. in the x2

direction. This case is very similar to the MBC-B case. We find that the Casimir force acting
on the piston is given by

F C
Cas(a;L1, L2) = F

C,L1=∞
Cas (a;L2) − F

C,L1=∞
Cas (L1 − a;L2),

where

F
C,L1=∞
Cas (a;L2) = πT

∞∑
k2=1

∞∑
l=−∞

√(
k2
L2

)2
+ (2lT )2

exp

(
2πa

√(
k2
L2

)2
+ (2lT )2

)
+ 1

. (15)

The difference between this term and the corresponding term in the case of MBC-B lies in
the summation over k2, where now k2 starts from 1 instead of 0. As in the previous case,
equation (15) shows that at any temperature, the Casimir force tends to pull the piston to the
equilibrium position x1 = L1/2. Moreover, it shows that in the high-temperature limit, the
leading term of the Casimir force is given by the classical term

F C
Cas(a;L1, L2) ∼ πT

L2

∞∑
k2=1

k2

exp
( 2πk2a

L2

)
+ 1

− (a ↔ L1 − a).

One can note that this classical term is the same as in the case of MBC-B given by (12). In
other words, the difference between the Casimir forces for the cases MBC-B and MBC-C is
insignificant at high temperature.

An alternative expression for F
C,L1=∞
Cas (a;L2) that can be used to study the small a and

low T behavior of the Casimir force is

F
C,L1=∞
Cas (a;L2) = 3ζR(3)

32π

L2

a3
− π

96a2
− ζR(3)

16πL2
2

− T

L2

∞∑
k2=1

∞∑
l=1

k2

l
K1

(
πk2l

L2T

)

+
πL2

2a3

∞∑
k1=0

∑
(k2,�)∈Ẑ

2

(
k1 +

1

2

)2

K0

⎛⎝2π
(
k1 + 1

2

)
a

√
[k2L2]2 +

[
l

2T

]2
⎞⎠

− π

2a2

∞∑
k1=0

(
k1 + 1

2

)
exp

(π(k1+ 1
2 )

T a

) − 1
. (16)

When the plate separation a is small, the leading terms of the Casimir force are given by

F C
Cas(a;L1, L2) ∼ 3ζR(3)

32π

L2

a3
− π

96a2
+ O(a0),

with leading order 1/a3 when a → 0+. On the other hand, the zero-temperature Casimir force
is

F
C,T =0
Cas (a;L1, L2) = 3ζR(3)

32π

L2

a3
− π

96a2
− ζR(3)

16πL2
2

+
πL2

a3

∞∑
k1=0

∞∑
k2=1

(
k1 +

1

2

)2

×K0

(
2π

(
k1 + 1

2

)
k2L2

a

)
− (a ←→ L1 − a), (17)

which only differs with the MBC-B case by the sign of the term π/(96a2). The thermal
correction also goes to zero exponentially fast when T → 0+.
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We would like to remark that the regularized Casimir energy and Casimir force acting
on the piston in this case are the same as the corresponding quantities for the massless
scalar field which assume Neumann boundary condition on the piston and Dirichlet boundary
conditions on the other walls. In fact, the zero-temperature Casimir force (17) agrees with the
corresponding result in [9].

3.4. Case MBC-D

We assume PEC b.c. in the x1 direction and mixed boundary conditions in the x2 direction. In
this case

E
D,reg
Cas (a;L1, L2) = E

II,reg
Cas (L2, a) + E

II,reg
Cas (L2, L1 − a).

Similar computations give

F D
Cas(a;L1, L2) = F

D,L1=∞
Cas (a;L2) − F

D,L1=∞
Cas (L1 − a;L2),

where

F
D,L1=∞
Cas (a;L2) = −πT

∞∑
k2=0

∞∑
l=−∞

√( k2+ 1
2

L2

)2
+ (2lT )2

exp

(
2πa

√( k2+ 1
2

L2

)2
+ (2lT )2

)
− 1

. (18)

Contrary to the previous cases, now we find that the Casimir force acting on the piston always
tends to pull the piston toward the closer wall, and away from the equilibrium position.
Equation (18) also shows that in the high-temperature regime, the Casimir force is dominated
by the classical term, i.e.

F D
Cas(a;L1, L2) ∼ −πT

L2

∞∑
k2=0

k2 + 1
2

exp
( 2πa(k2+ 1

2 )
L2

) − 1
− (a ↔ L1 − a) ,

as T → ∞. The remaining terms decay exponentially.
An alternative expression for the Casimir force is given by

F D
Cas(a;L1, L2) = − L2

8πa3
ζR(3) +

3ζR(3)

64πL2
2

− T

L2

∞∑
k2=0

∞∑
l=1

k2 + 1
2

l
K1

(
π

(
k2 + 1

2

)
l

L2T

)
+

πL2

2a3

×
∞∑

k1=1

∑
(k2,l)∈Ẑ2

(−1)k2k2
1K0

⎛⎝2πk1

a

√
(k2L2)2 +

(
l

2T

)2
⎞⎠ − (a ↔ L1 − a).

(19)

This shows that when the plate separation is small, the leading term of the Casimir force is

F D
Cas(a;L1, L2) ∼ − L2

8πa3
ζR(3) + O(a0),

which is of order 1/a3. Equation (19) also shows that in the low-temperature limit, the Casimir
force is dominated by the zero-temperature Casimir force given by

F
D,T =0
Cas (a;L1, L2) = − L2

8πa3
ζR(3) +

3ζR(3)

64πL2
2

+
πL2

a3

∞∑
k1=1

∞∑
k2=1

(−1)k2k2
1K0

(
2πk1k2L2

a

)
− (a ↔ L1 − a).

The thermal correction terms tend to zero exponentially fast when T → 0+.
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In the infinite parallel plate limit, we find that

F
D,||
Cas (a) = L2

{
−ζR(3)

8πa3
− T 3

2π
ζR(3) +

π

a3

∞∑
k1=1

∞∑
l=1

k2
1K0

(
πlk1

aT

)}
, (20)

which gives the zero-temperature Casimir force as

F
D,||
Cas (a) = −ζR(3)L2

8πa3
,

agreeing with well-known results (see, e.g., [29]). An alternative expression for (20) is given
by

F
D,||
Cas (a) = L2

{
− πT

24a2
− 2T 2

a

∞∑
k1=1

∞∑
l=1

l

k1
K1(4πlk1T a) − 8πT 3

∞∑
k1=1

∞∑
l=1

l2K0(4πlk1T a)

}
,

which shows that the classical limit of the Casimir force is given by

F
D,||,classical
Cas (a) = − πL2

24a2
T .

3.5. Case MBC-E

We assume PMC b.c. on the x1 direction and mixed boundary conditions on the x2 direction.
In this case, although the regularized Casimir energy is different from the regularized Casimir
energy for the case MBC-D, one can verify that their difference is a term independent of L1.
Consequently, the Casimir force acting on the piston for the case MBC-E is identical to that
for the case MBC-D.

We do not discuss the cases where the electromagnetic field assumes purely PEC b.c. on
both directions or assumes purely PMC b.c. on both directions. This has been considered in
[15]. Another case we do not consider here is the case where the field assumes purely PEC b.c.
on one direction and purely PMC b.c. on the other direction. The result is not much different
from the cases of purely PEC b.c. or purely PMC b.c. on all directions.

4. Discussion and conclusion

We have computed the exact formulae for the finite-temperature Casimir force acting on a two-
dimensional rectangular piston due to an electromagnetic field with different combinations of
boundary conditions. From the results, we can conclude that if mixed boundary conditions
are assumed on the piston and its opposite wall, then the Casimir force always tends to move
the piston to the equilibrium position, regardless of the boundary conditions assumed on the
perpendicular walls. In contrast, if purely PMC b.c. or purely PEC b.c. is assumed on the
piston and its opposite wall, then the Casimir force always tends to move the piston toward
the closer wall, again regardless of the boundary conditions assumed on the perpendicular
walls. This nature of the force is not affected by the change of temperature. However, as in the
case of pure boundary conditions discussed in [15], the magnitude of the Casimir force grows
linearly with temperature when the temperature is high enough. This implies that although
the Casimir force is a quantum effect, it has a classical limit, as has been observed in [25–28].

Comparing the magnitude of the Casimir force for various boundary conditions, we note
that in the case of an open piston (L1 → ∞), the magnitude of the Casimir force always
decreases as the plate separation a increases. Moreover, we see that when the plate separation

12
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Figure 2. The absolute values of the Casimir forces for various boundary conditions when
L1 → ∞ and L2 = 0.2 m. Here the unit of a is m, the unit of force is h̄c × N. The graphs
correspond to T = 0 K, 1 K and T = 300 K, respectively.

a is small, the leading term of the Casimir force for the cases MBC-A, MBC-B and MBC-C
which all assume mixed boundary conditions in the x1 direction are the same is equal to

3ζR(3)

32π

L2

a3
. (21)

For the cases MBC-D or MBC-E which assume pure boundary conditions in the x1 direction,
the leading term is

−ζR(3)

8π

L2

a3
. (22)

Its magnitude is 4/3 times larger than the case of mixed boundary conditions in the x1

direction. Equations (21) and (22) are also the corresponding zero-temperature Casimir force
in the infinite parallel plate limit. On the other hand, we also note that the classical limit of the
Casimir force for the MBC-B and MBC-C cases is the same. For all the boundary conditions
considered, the magnitude of the classical limit always decreases as the piston moves toward
the equilibrium position. In the infinite parallel plate limit, the magnitude of the classical term
for plates with mixed boundary conditions is half that for plates with pure boundary conditions.
The comparisons of the Casimir forces with different boundary conditions and at different
temperatures are depicted in figures 2 and 3, respectively. Here we would like to remark that
by restoring the units h̄, kB and c, we have to replace T in the expressions for Casimir force
with kBT /(h̄c). Therefore, for physical T = 1 K we need to substitute T = 436.7 m−1 which
is actually large if compared to a in the range 0.01 m ∼ 0.2 m which is equivalent to a−1 in
the range 5 m−1 ∼ 100 m−1. This explains the big difference between the zero-temperature
Casimir force and the Casimir force at T = 1 K observed in figure 3 when a is in the range
0.01 m ∼ 0.2 m. In fact, if we plot the Casimir force for a in the range < 0.1 mm, we would
not observe significant difference between the Casimir force at T = 0 K and T = 1 K.

This work can be generalized to higher dimensions, where the formulae are expected
to be more complicated. Moreover, there will be more different combinations of boundary
conditions. We leave this discussions to the future. Another interesting subject to explore is
to consider a ‘continuous’ change of boundary conditions from PEC b.c. to PMC b.c. on the
piston but fixing the boundary condition on the opposite wall, and to investigate the gradual
change of the nature of the Casimir force on the piston. This may give us some insights into
the mechanism of the change of the nature of the Casimir force.

Finally, we would like to remark that although the piston scenario has the advantage of
providing a formalism to obtain a Casimir force that is free of a divergence problem, it has its
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Figure 3. The comparisons of the Casimir forces at different temperatures when L1 → ∞ and
L2 = 0.2 m. Here the unit of a is m, the unit of force is h̄c × N.

own limitations. At the moment, this formalism cannot be used to obtain the Casimir force
acting on the rectangular walls without substantial modification, otherwise it will lead to a
thermodynamically inconsistent Casimir effect. Some recent endeavors to solve the problem
of obtaining physically consistent Casimir force acting on the walls of a rectangular cavity
can be found in [30, 31]. In particular, Geyer et al [30] have proposed a formalism that can
give a thermodynamically consistent Casimir energy in an ideal rectangular metallic box.
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Appendix. The Chowla–Selberg formula for the Epstein zeta function and its derivative

at zero

Here we gather some formulae we need for the Epstein zeta function (3) and its derivative at
zero. The Chowla–Selberg formula [18–20, 32–37] says that
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Zn(s; c1, . . . , cn) = Zm(s; c1, . . . , cm) +
πm/2

(
s − m

2

)[∏m
j=1 cj

]
(s)

Zn−m

(
s − m

2
; cm+1, . . . , cn

)

+
1

(s)

2πs[∏m
j=1 cj

] ∑
k∈Ẑ

m×̂

Z
n−m

⎛⎝ ∑m
j=1

[ kj

cj

]2∑n
j=m+1[cj kj ]2

⎞⎠
2s−m

4

×Ks− m
2

⎛⎜⎝2π

√√√√√
⎛⎝ m∑

j=1

[
kj

cj

]2
⎞⎠⎛⎝ n∑

j=m+1

[cj kj ]2

⎞⎠
⎞⎟⎠ , (A.1)

where Kν(z) is the modified Bessel function. By taking derivative with respect to s and setting
s = 0, we find that

Z′
n(0; c1, . . . , cn) = Z′

m(0; c1, . . . , cm) +
π−n/2

(
n
2

)[∏n
j=1 cj

] Zn−m

(
n

2
; 1

cm+1
, . . . ,

1

cn

)

+
2[∏m

j=1 cj

] ∑
k∈Ẑ

m×̂

Z
n−m

⎛⎝ ∑m
j=1

[ kj

cj

]2∑n
j=m+1[cj kj ]2

⎞⎠− m
4

×Km
2

⎛⎜⎝2π

√√√√√
⎛⎝ m∑

j=1

[
kj

cj

]2
⎞⎠⎛⎝ n∑

j=m+1

[cj kj ]2

⎞⎠
⎞⎟⎠ . (A.2)
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